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Abstract A systematic approach for solving a large-scale
design problem is proposed. The method consists of
building a multidimensional test case matrix connecting
an output (scalar or vector) to an input vector. Every
element of the input vector spans over its possible
minimum and maximum values with one or more levels
in between. The experimental and validated computational
methods are combined to find the output as a function of all
permutations of the input variables. The results are used to
train a neural network program to perform the proper
interpolation for any other expected scenario. The number
of required experiments is obtained asymptotically by
adding more data to the neural network training set and
examining the error. The applicability and feasibility of this
approach is shown in two different problems: first,
predicting and minimizing the infiltration rate into an open
refrigerated display case; and second, predicting the
evaporation rate of sessile microdroplets on a nonpermeable
surface.
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Introduction

Many engineering problems have a high level of complexity
due to certain parameters such as geometry, conditions of
operation, and range of applicability. In the area of fluid
flow, such parameters are introduced through geometrical
variables, turbulence and flow structures, concentration and
temperature gradients, pressure distributions, etc. The time
and length scales may not necessarily coincide or be of the
same order of magnitude for all phenomena present in a
given problem adding further complexity to finding a
solution. These flow problems are governed by the Navier—
Stokes (NS) equations, and their numerical solutions have
grown into an area of science and engineering called
computational fluid dynamics (CFD). The Reynolds-averaged
solution of the NS equations (RANS) requires physical
models to be incorporated into the solution to these equations.
Turbulence, viscosity (Newtonian vs. non-Newtonian), phase
change, and chemical reaction kinetics are examples of
physical models that need to accompany the NS equations to
make the solution more practical and feasible.

Obtaining analytical/numerical solutions to complex
fluid flow problems may be questionable if they are not
verified with experimental results. This is mainly due to the
existence of multiple solutions for the NS equations and
also because the physical models are accompanying these
equations. Obtaining a solution to NS equations only by
conducting experiments is time consuming, may not be
possible, or financially exhaustive. However, utilizing a
numerical/computational technique such as a validated
numerical solution will reduce the burden of excessive
experimentations. Thus, a combined or hybrid approach
provides a more feasible and realistic alternative. However,
if the numbers of possible scenarios increase because of
multitudinous permutations, a hybrid approach will also
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become impractical. Consequently, creating an engineering
design tool that can easily be used for parametric studies of
a specific problem without the complexities of a fully
hybrid approach is of great practical value. The goal of this
study is to develop an artificial neural network (ANN)
program to serve as the main tool.

Artificial neural network models were first introduced by
McCulloch and Pitts in 1943, as was explained by Cheng
and Titterington (1994). ANN models are algorithms that
predict an outcome variable based on the values of some
independent variables. A typical ANN model learns from
examples and processes the information through special
training algorithms that are developed based on learning
rules (Hajmeer and Basheer 2003). The ANN will be
developed to provide a practical tool to predict the outcome
of a scenario that is defined by its input variables.

The ANN is a computer program that is capable of
learning the patterns of the change of dependent variable(s)
with respect to the independent variables via training
samples. It resembles biological neural nets in two ways:
(1) Knowledge is acquired through learning (training)
processes, and (2) Knowledge is stored via interneuron
connection strengths (weights).

ANN models consist of one input layer, at least one
hidden layer, and one output layer of nodes. Figure 1 shows
a typical ANN model with three layers. The first layer
consists of n nodes for n independent variables (xo, ..., Xy),
second layer (hidden layer) consists of m nodes, and finally,
the output layer has » nodes for r outcome variables
1, ...,yr). The most commonly used ANN models are
feed-forward back-propagation models (Fig. 1). In this type
of model, every output variable (¥;) is a function of all
nodes in the hidden layer, and each node in the hidden layer

Fig. 1 Schematic of ANN
model (Hajmeer and Basheer
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is a function of input variables (xo, ..., x,). No interaction is
allowed between nodes of the same layer. The hidden layer
(s) allows the model to handle the nonlinearity and
complexity of the relationship of variables. An ANN
model, similar to Fig. 1, will estimate an output vector
()A’) as close as possible to the actual output vector (¥) by
receiving an input signal vector X. The data will be
processed in the hidden layer using each node’s
corresponding weight (w;;), and then the processed data
will be passed on to the output layer. An output vector of Y
will be estimated using each node’s corresponding weight
(viy)- The numerical simulations can be performed off-line,
and the results will be used to train the ANN program. The
ANN will be a simple-to-use and extremely practical tool.

Artificial neural networks in fact provide an alternative
paradigm or mechanism for performing regression or curve
fitting as compared to classical regression methods. In other
words, ANNs denote a tool that achieves an implementa-
tion of regression. The classical regression approaches are
linear, whereas ANN is a generalization of regression to
nonlinear systems. Many papers in various fields have used
both regression and ANN for approximation applications.
In essence, the main attribute of utilizing this alternative
paradigm is that there is no need to assume an underlying
distribution of data, and ANN can be applied to multivar-
iate nonlinear problems. Furthermore, if the output data is
spread over a wide range as input variables are altered, the
clustering technique is attributed into the ANN to more
accurately predict the outcome. The ANN resembles
biological neural nets in two ways that were described
previously.

It is the intention of this paper to demonstrate the
feasibility and practicality of the proposed approach
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through two entirely different examples. Both problems use
their own corresponding input vector, but one has a scalar
output, while the other has a functional output. We refer to
this methodology as solution to large-scale engineering
problems (SLEP).

While neural networks have been used to various
capacities within food and bioprocess technologies, such
as the work of Martins et al. (2008), Boyaci et al. (2008),
and Patnaik (2008), the first part of our focus will be on the
application of neural network towards solving large-scale
problem in this industry. In this problem, the ANN is used as a
tool to find the infiltration rate of warm air into a medium-
temperature, open, refrigerated display case for any design
configuration dictated by each manufacturer. The ANN can
also be used to perform parametric studies for finding the
specific input combination(s) that result in minimum infiltra-
tion rates. The second problem is transient evaporation of a
sessile droplet on a nonpermeable surface subject to wind, i.e.,
convective evaporation. It is evident that the evaporation rate
or the amount of remaining mass is a function of time;
therefore, the ANN algorithm should be altered accordingly.

While the numerical solution of similar problems is
computationally intensive and obtainable on supercomputers,
they are of no practical value when a real-time response is
necessary. The only practical solution is to perform the experi-
ments and/or run the computer simulations for all the permu-
tations of expected scenarios off-line and load the outputs into
an ANN platform to enable proper prediction of unforeseen
circumstances. Thus, the ANN will be “trained” based on the
provided outcomes of certain events enabling it to make
predictions of other possibilities. This prediction takes only
seconds, making the ANN a more practical platform for field
applications that can be run on any small computer.

Methods of Solution

Two large-scale problems are selected to demonstrate the
accuracy and applicability of the ANN in providing an
engineering tool with a fast turn-around time. One is a
steady-state problem, and the other is a transient problem
that requires an output as a function of time. The NN
program is based on the ™LabView software and can be
run on any system with Windows XP Operating System
(Kehtarnavaz, N., User’s Guide, LabVIEW-Based Neural
Network Software).

Application of ANN to an Open Refrigerated Display
Case—Steady State Problem

The first problem concerns open refrigerated display cases
that are widely used in supermarkets to maintain the food
products at prescribed temperatures. Cold air is provided

through an inlet jet called the discharge air grille (DAG)
located at the top front of the unit and through a group of
slots located on the back panel of the case (see Fig. 2). The
cold air jet at the top forms an invisible barrier between the
outside warm air and the cold air inside the display case and
enters the return air grille (RAG) located on the front and
lower part of the display case. This invisible barrier is
called the air curtain, and depending on its characteristics
(velocity profile shape and magnitude, turbulence intensity,
etc.) at the point of origin (i.e., the DAG), the curtain
controls the amount of outside warm air that is pulled into
the mixing zone. The continuous flow of warm air into the
air curtain and its subsequent mixing with cold air is called
entrainment. A portion of the entrained air spills over after
some mixing with the cold air, and the rest is infiltrated into
the RAG after it has increased the cold air temperature and
thereafter imposes a cooling load on the refrigeration cycle.
Obviously, the amount of infiltrated warm air should be
kept to a minimum to conserve energy for running the
cooling cycle to maintain a prescribed cold air temperature
that is being driven to the DAG and the back panel. There
have been numerous studies by Navaz et al. (2002, 2004,
2006a, b, 2007a) to identify parameters that can affect the
infiltration rate in open refrigerated display cases. They
have used a hybrid numerical and experimental approach to
calculate the infiltration rate of the warm air into these
display cases. Parameters that can significantly affect the air
curtain characteristics are the Reynolds number at the
DAG, the opening height, the offset distance (or angle)
between the DAG and RAG, back panel flow ratio (to the
total flow rate), and the throw angle (the angle of the
exiting velocity vector at the DAG). Other parameters such
as temperature, the amount of food products on the shelves,
and the distribution of the back panel flow among the
shelves can also alter the infiltration rate, though their
impacts on the infiltration rates is less and of second-order
effect. Therefore, by focusing on the most important
parameters, we will show how the SLEP method can help
engineers to improve their designs and also help manufacturers
to know the infiltration rate of their current designs.

The infiltration rate within an open refrigerated display
case can be directly measured by using carbon dioxide as a
tracer gas. The equation relating the nondimensional
infiltration rate (at the steady state) to the flow parameters
is derived as (Amin et al. 2008):

Non — Dimensional Infiltration

_ |:(CC02)DAG_(CC02)RAG:|
(CC02 )DAG - (CCOZ )Room

H mgp >
= s T Rea a, IB 1
/ ( WbAG = MTotal m
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Fig. 2 Schematic of a typical
open refrigerated display case
with problem parameters
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In this equation, C is the mass fraction of the tracer gas
(CO, in this case), Re is the Reynolds number based on the
DAG width, « is the offset angle, 3 is the throw angle, H is
the vertical height of the opening, and ’"B:’ represents the
ratio of the back panel mass flow rate to the total display
case mass flow rate. The mass flow rate can also be
estimated with the volumetric flow rate if the density is
maintained constant. The number of parameters can be
increased without any impact on the methodology that is
going to be discussed hereinafter.

A modular display case was designed and built as shown
in Fig. 3. Sampling probes 1, 2, and 3 measure (Ccoz)pac,
(Cco2)rac, and (Ccoz)rooms Tespectively, which are used to
calculate the nondimensional infiltration rate shown in
Eq. 1. In this display case, it is possible to change all the
problem variables (on the right side of Eq. 1), enabling us
to measure the infiltration rate for all permutations (Navaz
et al. 2005). A maximum and minimum “possible” value
for each parameter is set. A certain number of levels
between the maximum and minimum of each variable will
specify the total number of permutations or experiments
that need to be performed. In Table 1, the assumed
maximum and minimum values and the number of levels
for each variable are presented. It can be seen that, as the
number of variables increases, the required number of
experiments also increases significantly. Furthermore, as
the number of levels increases, the number of infiltration
rate measurements also grows considerably. The number of

levels and the minimum/maximum for each variable was
considered after numerous consultations with a team of
experts and researchers from universities, organizations,
and manufacturers. Initial CFD studies with the Fluent code
demonstrated a monotonic variation of the infiltration rate
as a function of H/Wpag and «. However, the infiltration
rate did not demonstrate the same behavior as a function of
the Reynolds number or the throw angle and therefore
required more values. These results were also verified with
the experimental data and are addressed by Amin (2006)
and Faramarzi et al. (2008). To cover the entire range of
operation, a total number of 576 experiments should be
performed. A hybrid approach that combines numerical and
experimental results can be used to fill the permutation
matrix. However, if the number of parameters and levels,
which basically defines the matrix resolution, is increased
simultaneously, the total number of required data points
(numerical or experimental) will become prohibitively large.
Using an artificial neural network program provides a tool
for interpolation of any unknown scenario from the provided
known data points and allows for the reduction of the number
of levels from the required data points. The importance of
reducing the number of measurements can be appreciated
when the usage of resources can be significantly reduced.
The process algorithm can be outlined:

Assume the level of each variable (at least three
levels to yield the minimum resolution for

Step 1:
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Fig. 3 Modular equipment setup
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Table 1 Maximum, minimum, and number of levels for each variable

Variable Minimum Maximum Levels Number of Levels

HIWpac 8 16 8, 12, 16 3

mpp [MTotal 0 1.0 Four levels (varies for different Reynolds numbers) 4

Re 2,000 8,400 2,200, 3,400, 5,500, 8,400 4

«a 0° 24° 0°, 16°, 24° 3

B —50 13° —5°,0°, 5°, 13° 4
interpolation purposes) and randomly collect the  of the hatched cell in Fig. 4 will correspond to a
infiltration data points. These points can be obtained permutation at (H/Wpag)s, ,;"TBI’I , Rey, a3, (34. As stated
by experimental or validated CFD programs. in step 1, a number of test conditions are randomly selected;

Step 2: Train neural network program using 75% of these  this number can be noticeably less than the total number of

data.

Step 3: Validate several unknown scenarios (include
mostly the remaining 25% of the data in step 1
that were not used in step 2) with the neural
network tool and compare the results with the
measured data, i.e., test the neural network
prediction. It should be noted that these cases
should be chosen randomly.

Step 4: If the results of step 3 are satisfactory, the prediction
tool accuracy can be acceptable; if not, one
additional level is added to the most sensitive
variable, and steps 1 through 4 are repeated.

The test case matrix of the first problem is shown in
Fig. 4. It contains different levels of the input (independent)
variables appearing on the right-hand side of Eq. 1 and has
576 cells for the outputs (dependent variable). Each cell in
the table represents the nondimensional infiltration rate
data point at a specific permutation. For instance, the value

permutations. This selection will have to be made uniform-
ly from the entire matrix. The randomly selected cells are
marked by “X.” The corresponding nondimensional infil-
tration rates of these cells are found by experimental and/or
numerical models. The ANN program is trained by these
data to obtain multidimensional functions. When the
functions are available, the input conditions of a few cells
marked by “X” will be fed into the neural network for
validation. The output will be the predicted values of the
cells, which ideally should be as close as possible to the
actual values (computed or measured). If the difference
between the predicted and the actual values is large, we
increased the number of input data (experiments or marked
cells). To implement this, a new series of random data
marked with solid circles “*” (see Fig. 4) is added to the
pool of “X” data. All the above steps taken for “X” cells
should be repeated for a total of “X” and “” cells. This
procedure continues until the desired accuracy of the
predictions is achieved.

(HWpaoh (H/ Wpao) (EH/Wpae)s
B X T _‘12 T~ _‘13 ] 01_ ] az [ as a ] az Qg
Re,: Re; | Re;; Rey||Re, | Re; i Re;i Rey[|Re, | Rey: Reyi Re,J Re,; Rey; Reyi Re | Re, i Rey i Reyi Rey|| Re, i Rey Reyi Rey| Rey | Reyi Rey: Rey|[Re; | Rey: Rey Rey|(Re, | Rey i Rey: Rey
8, | x X . X X . X X X . X
Mgp B8, X X . X X .
(Woﬁl 8, . X X . X . X .
8, X o | X o | x % X . of X X X
. 8, X . X . x| x o| x
(’"3:‘] 8, X X o | X X . X . X X .
iy, 2| B . X X X X . X . .
By . X X X . X
B | X X . . X X . x |[ x
('"BP) 8, X X . o[ x X x| x .
Mrowt J3| B, . X . X X . X X X [ x
8B, X . X[ x X . X . X .
8, X x . X1 x X e
(’hBZJ B, | X . X| e X X . X x| e
Proal)s| Bs X x| e X X X . X X
By | x| ® X X * X ° X X

Fig. 4 Random selections of permutations in the test case matrix of first problem
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Figure 5 shows the user interface of the NN training
program. In the interface, in addition to feeding the input
data files, some program parameters such as maximum
number of epochs, step-sizes, etc. can be adjusted to
produce more accurate outputs. Figure 6 is the recall
interface that can be used for parametric studies as well as
the prediction of infiltration rate for a specific design. In
this interface, one can input the variables shown in Fig. 2.
Then the normalized and absolute infiltration rates are
calculated.

Based on the ANN results, it was predicted that, upon
reducing the discharge grille velocity by about 25%, an 8%
reduction in infiltration rate will be achieved. This value
was verified by collecting water condensate and backing up
the amount of fresh air that entered the display case over a
24-h period. The measured power saving during 24 h or the
24-h test indicated 6% reduction in kWh; the details can be
found in Faramarzi et al. 2008.

Application of ANN to the Evaporation of a Sessile
Droplet—Transient Problem

The second problem is chosen to demonstrate that the
output can also be in the form of a function rather than a
scalar number. There is a growing interest in predicting the
fate of chemical agents after they are deposited onto a

surface. The surface may be permeable or nonpermeable to
a liquid agent. The process may be further complicated if
there is a chemical reaction between the agent and the
substrate. So far, there has not been any analytical model
capable of predicting the amount of any chemical agent left
in time given all the physical and chemical complexities
that may occur between the agent and a porous substrate.
The development of numerical methods capable of prediction
of chemical agents’ fates after they are deposited on porous or
nonporous substrates is currently proceeding (Markicevic and
Navaz 2007; Navaz et al. 2007b, 2007c, 2007d). The
purpose of this test case is to predict the function that
expresses the amount of normalized mass left during the
evaporation as a function of time.

For the second problem, the evaporation rate has been
shown to be a function of the friction velocity, air and
droplet temperatures, droplet size, and number density
deposited on the area as discussed by Navaz et al. (2006b,
2007b). It has been shown that embedded in the friction
velocity is the free stream turbulence effects. It is evident
that the amount of remaining mass is a function of time,
which is represented by the evaporation rate. Therefore, an
input vector results in an output that is a function (of time)
rather than a single number.

We have chosen the modeling of convective evaporation
of microdrops on nonpermeable and nonreacting surfaces to

| Ele Edt View Project Operate Tools Mndow Hep

»(@|[®[n]
S -
Select traning data fie H20 weights —= e
%/C:\Documents\Edson\NN} |[EJ 1 C:\Documents\Edison\NN\, EJ Path to store weights
et e
Select validation data fie 12H weights 1 weights =
4/C:\Documents\Edison\NN\ |@ % C:\Documents\Edison\NN\ E!

Set Network Parameters

Epoch

=

No. of i/p unts Activation fen(Hidden layer) Leamning mode  Leaming rate

,7 i — T = ] 7 3 Max no. of epochs

E )f Bipolar Sigrmoid t{-j Stochastic () Fxed step-sze Starting step-size g

No. of hidden unts  Activation fen(Output laver) |0 Batch () Adaptive step-sze  |0.03 FOO0020000 .4 200

B I Bipolar Sigmoid BetsBarDas 7 = = 10000 J)qmm

No. of o/p units Leaming error threshokd beta deka theta ]0_1 n" 50000
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Current Epoch
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TRAIN

Epoch

Fig. 5 The neural network training program user interface for the infiltration rate prediction

@ Springer



Food Bioprocess Technol
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Fig. 6 The recall interface for the neural network prediction of infiltration rate

demonstrate the NN capabilities. Figure 7 shows a
schematic of a sessile droplet in the form of a spherical
cap residing on a nonpermeable surface subject to wind
speed. As the evaporation occurs, the remaining mass will
take the shape of a spherical cap. In this paper, we have
used the chemical agent HD (known as Mustard agent) in
its liquid form evaporating on a nonpermeable glass
substrate.

The evaporation rate of a sessile drop on a nonperme-
able/nonreacting substrate is derived by Navaz et al.
(2006b, 2007b).

mevaporated = % (FT + CTRemTPrnT)en[1 + A(Tu Ys)]a (2)

With:

Y, HC)
A= (12

where £(O) = —57.6148 + 174.578160
— 172775167 + 80.405646°

T P,
© = —— (Absolute temperatures) and Y, = —->
T ref P
(3)

In these equations, 7evaporated 1 the mass flow Jate, u is
the viscosity, Pr is the Prandtl number, Re = 2“2 is the
Reynolds number based on the droplet radius of curvature

@ Springer

and friction velocity ut = %W, with 7,, being the shear
stress at the wall, P, is the vapor pressure, and Fr, mr, ng
and Cr are model constants obtained by wind tunnel
experiments (Navaz et al. 2006b, 2007b). The natural log
term represents the transfer or Spalding number. The free
stream turbulence intensity alters the wall shear stress, and
therefore, the use of the friction velocity will incorporate
both the momentum and turbulence effects into the
evaporation model as discussed in detail by Navaz et al.

Wind

Fig. 7 Schematic of a sessile droplet on a substrate subject to wind
conditions
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Table 2 Minimum, maximum, and number of levels for the evaporation problem

Variable Minimum Maximum Levels Number of Levels
T (°C) 15 55 15, 25, 35, 50, 55 5
Tarop (°C) 15 55 15, 25, 35, 50, 55 5
u (m/s) 0.0285 0.1796 0.0285, 0.1038, 0.1534, 0.1796 4
Varop (UL) 1 9 1,6,9 3
Narop/Area (m?) 3,600 10,000 3,600, 6,400, 10,000 3

(2007b). The instantaneous mass of the agent evaporating is
obtained from Eq. 2 by the Runge—Kutta fourth-order
numerical integration. The amount of normalized mass left
can be calculated from the total evaporated mass as:

ul dm d
1
Mieft = Minitial — E (n—1) Ap——5
p dt
N i (4)
evaporated
3 (1 — 1) ApDesmnscs
Mieft 1 =l
Minitial Minitial

It is known that for HD the initial contact angle on glass
is about 32°. When evaporation starts, HD maintains the
same base diameter, while the spherical cap is being
reduced in height. When the contact angle reaches about
10°, the base diameter reduces, and the contact angle
remains constant. Based on these observations and Eq. 4,
the new topology of the droplet is found. We have used the
model to provide the training set for the NN. Table 2 shows
the variation of each parameter over the range of interest.
The matrix that consists of all the permutations has 900
entries. The computer program was run for all 900 cases;
however, the training set started with only 50 scenarios and

was increased to 100 cases. The corner points and selected
boundaries were intentionally included in the training set to
bind the domain. The rest of the points were randomly
selected by the ANN.

Results and Discussion

For the input variables shown in Eq. 1 or Table 1, the
nondimensional infiltration rate of the outside air into the
display case is considered to be the output. This quantity
was measured initially for 150 different permutations, and
the number was increased to about 250 and finally to 576.
An additional 48 infiltration rates (not shown in Fig. 4)
were experimentally measured for randomly selected values
within the range from Fig. 4. The maximum training error
under 1% for the ANN was observed. Therefore, it was
concluded that the number of required tests has asymptotically
reached an acceptable value well below the experimental
error. Thus, this method attempts to asymptotically approach
the optimum number of total data points (experimental,
numerical, or hybrid) by progressively adding new series of
data points to the existing input values of neural network. The
576 data points can sufficiently express the infiltration rate as

Table 3 Comparison of several actual and neural network nondimensional infiltration rate predictions

a(®) 8 ) Re 7P /M Total H/w Nondimensional infiltration rate
Actual NN % Error

0 -5 5,500 0 8 0.239 0.244 2.0
0 5 2,200 0.34 16 0.282 0.298 5.6
0 5,500 0.37 12 0.302 0.293 3.0
0 13 3,400 0.46 8 0.270 0.281 3.7
16 0 3,400 0.54 16 0.346 0.332 4.0
16 =5 8,400 0.41 16 0.295 0.320 8.0
16 13 8,400 0.41 8 0.329 0.314 4.6
16 5 5,500 0.37 16 0.376 0.392 4.2
24 =5 8,400 0 12 0.211 0.199 5.7
24 0 2,200 0.52 8 0.438 0.415 5.2
24 5 2,200 0.34 12 0.424 0.395 6.8
24 13 3,400 1 16 0.419 0.410 2.1
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a function of all the variables. The trained neural network can
be used as a design tool for parametric studies, where the input
variables can be changed, and the infiltration rate will be
calculated by the network within seconds.

Table 3 reflects some of the testing results of the neural
network program. It should be mentioned that the NN
comparison spans over the entire input domain. Figure 5
indicates that an error under 1% for the training is achieved.
The ANN prediction for 50% of a randomly selected subset
of 576 experiments was conducted. Table 3 just represents a
short version of a large comparison. A maximum error of
8% was observed in the entire set, and this case is shown in
Table 3. The coefficient of determination (R?) was found to
be about 0.945 for the whole pool of data (including the
data used for training as well as validation), and as is

evident, there is an excellent agreement between the ANN
prediction and actual measurements as seen in Table 3.

In the second problem, a similar matrix as shown in
Fig. 4 for this test case can be constructed with 900 possible
scenarios. Conducting 900 experiments with dangerous
agents could be very costly and is not a feasible option.
Furthermore, the required 900 levels can easily be increased
to several millions for more complex problems. It was
found that the training of the ANN yielded sufficiently
accurate results with a maximum error of 9% using only
about 11% of the 900 data points (100 entries). The initial
training was started with only 50 data points that yielded a
maximum average error of 20%. The number of training
sets was increased to 100 to lower the maximum average
error. Figure 8a shows the error obtained during the training

priace. vi
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Fig. 8 (continued)

which is well under 1%. This analysis was done with two
clusters. The program can have a maximum of seven
clusters depending on the spread of data points. For
instance, for higher temperatures, the evaporation rate
increases significantly, and the prediction of a scenario at
high temperature by the ANN will give better results if it is
predicted with a particular cluster trained for this “high”
temperature region.

A sample comparison is shown for the evaporation of
HD on glass in Fig. 8b. The figure on the left shows
the comparison with the first cluster, while the figure on the
right shows a better result if the second cluster is used. The
average error for the left figure is about 9%, and this is
reduced to about 3.5% when the second cluster is used.
Another advantage of the clustering option is to find “the
best” match especially when a good resolution of data is not
available. This is particularly the case when the agents are
deposited on various porous substrates. Some agents may
react with a substrate and produce more toxic chemicals.
Therefore, in reality, the required number of data may not
be available, and we have to do our best to determine “the
best” possible prediction under all the existing constraints.

Conclusions

The neural network algorithms were successfully imple-
mented to predict the output of two problems with a vector
input. In the first application, the output was a scalar
number, while in the second application, the output was
represented by a function. In both cases, the neural network
was utilized as a prediction tool based on a provided limited
training set. The NN was also used to asymptotically lead
us to the “minimum” number of required experiments
needed from a large set that could reasonably represent the
entire matrix. This approach has been shown to be
particularly useful in creating a practical engineering tool
for the outcome prediction of a large-scale problem. It
should also be added that, in some cases similar to the
second problem discussed in this paper, the cost of each test
is currently about $15,000, and it is quite risky to work with
hazardous materials. The ANN can be used to reduce this
risk factor.
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